Spinal and Bulbar Muscular Atrophy - Clinical Features and Pathogenesis

Clinical features
SBMA, or Kennedy’s disease, is an inherited lower motor neuron disease characterised by adult-onset muscle atrophy, weakness, contraction, fasciculations, and bulbar involvement\(^1\). The onset of weakness is usually between 30 and 50 years, but often preceded by nonspecific symptoms such as tremor, muscle cramps and fatigue\(^4\). Muscle atrophy and weakness are predominant in the tongue and proximal musculature. Deep tendon reflex is diminished or absent with no pathological reflex. Sensory involvement is largely restricted to vibration sense which is affected distally in the legs\(^7\). Male patients often demonstrate signs of androgen insensitivity such as gynecomastia, testicular atrophy, impotence and decreased fertility\(^5,6\), some of which are detected before the onset of motor symptoms. Hyperlipidemia, liver dysfunction and glucose intolerance are also seen in some cases\(^3\). SBMA chiefly affects males, whereas females with the mutation are usually asymptomatic even when homozygous\(^8,9\). The prevalence of SBMA has been estimated 1 in 40000 in areas with high ascertainment\(^11\), although a considerable number of patients may have been under diagnosed\(^12,13\).

The disease progresses slowly in general, although repetitive respiratory tract infection often occurs in the advanced stage of the disease, resulting in early death in some patients\(^8\). No specific treatment for SBMA has been established. Testosterone has been used in some patients, although it has no effects on the progression of SBMA\(^14,15,16\).

Genetics
The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyQ tract, in the first exon of the androgen receptor (AR) gene\(^2\). The number of CAG repeat within AR is 11 to 35 in normal subjects, but it expands from 40 to 62 in patients\(^2,28\). Expanded polyQ tracts have been found to cause several neurodegenerative diseases including SBMA, Huntington’s disease (HD), several forms of spinocerebellar ataxia, and dentatorubral and pallidoluysian atrophy (DRPLA)\(^20,21,30\). There is an inverse correlation between the CAG repeat size and the age at onset, or the disease severity adjusted for age at examination in SBMA\(^2,23\) as well as other polyQ diseases\(^24,25\). These observations suggest that common mechanisms underlie the pathogenesis of polyQ diseases, despite the fact that the causative protein for each of the diseases are different except for the existence of polyQ stretch. Although the expansion of polyQ tract in AR disrupts the transcriptional activities of AR\(^13,24\), motor impairment has never been observed in severe testicular feminisation patients lacking AR function\(^9\). Therefore, as in other polyQ diseases, a toxic gain of mutant AR function has been considered to cause neuromuscular disorder in SBMA.

Pathology
Lower motor neurons are markedly depleted through all spinal segments and in brainstem motor nuclei except for the third, fourth and sixth cranial nerves in autopsy cases of SBMA (Fig. 1A)\(^1,2,8\). A striking pathologic hallmark of most polyQ diseases is the presence of nuclear inclusions (NIs), which has been considered relevant to the pathophysiology\(^9\). In SBMA patients, NIs containing the mutant AR are detected in the residual motor neurons (Fig. 1B)\(^29\) as well as in other visceral organs\(^30\). Although the exact role of NIs in the pathogenesis is to be elucidated, nuclear accumulation of mutant protein is essential for inducing neuronal cell dysfunction and degeneration in the majority of polyQ diseases\(^8,31\). In support of this hypothesis, the dysfunction of nuclear transcriptional regulatory proteins have been considered crucial in polyQ pathogenesis\(^11,12\). Since ligand facilitates the nuclear translocation of AR, it appears to be logical that SBMA pathogenesis is ligand-dependent (Fig. 2).

Androgen receptor (AR) dynamics in SBMA
AR is a member of the steroid/thyroid receptor superfamily. In a normal cell (A), AR is confined to a multi-heteromeric inactive complex with heat shock proteins (HSPs) in the cell cytoplasm. Ligand-binding facilitates its dissociation from this complex and translocation into the nucleus. ARs undergo conformational change, form a dimer, bind to androgen response elements (ARE) in the DNA, and function as ligand-dependent transcription factor. In SBMA (B), mutant AR is partially cleaved and translocates into the nucleus in a ligand-dependent manner. In the nucleus, mutant ARs aggregate and form nuclear inclusions as a consequence. This inhibits the function of critical cellular proteins inhibited by soluble and/or aggregated AR, resulting in transcriptional dysregulation. On the other hand, the decreased transactivating function of mutant AR may contribute to the androgen insensitivity and neurodegeneration in SBMA.

Histopathology of SBMA
In Kluver-Barrera’s stain of the lumbar anterior horn (A), motor neurons are depleted in SBMA compared with normal control. A residual motor neuron in the lumbar anterior horn shows a nuclear inclusion detected by anti-polyglutamine antibody (B, arrow).
Ligand-dependent pathogenesis

We generated transgenic mice expressing the full-length human AR containing 97 CAGs under the control of a cytomegalovirus enhancer and a chicken β-actin promoter1. The mice (AR-97Q) showed small body size, short life span, progressive muscle atrophy and weakness as well as reduced cage activity, all of which were markedly pronounced and accelerated in the male AR-97Q mice, but were either not observed or far less severe in the female AR-97Q mice. Western blot analysis and immunostaining showed markedly more abundant nuclear accumulation of mutant AR in male mice than in their female counterparts, in agreement with the symptomatic differences with gender. Gender effect on the phenotypes has also been demonstrated in another transgenic mouse model of SBMA9,10.

Castrated male AR-97Q mice showed marked improvement of symptoms, histopathologic findings, and nuclear localisation of the mutant AR compared with the sham-operated male AR-97Q mice. In contrast to castration of the male mice, testosterone caused significant aggravation of symptoms, histopathologic features, and nuclear localisation of the mutant AR in the female AR-97Q mice. Since the nuclear translocation of AR is ligand-dependent, testosterone appears to show toxic effects in the female AR-97Q mice by accelerating nuclear translocation of the mutant AR. By contrast, castration prevented the nuclear localisation of the mutant AR by reducing the testosterone level. In support of this hypothesis, the ligand-dependent neurodegeneration has also been revealed in a Drosophila model of SBMA9. Alternatively, castration may enhance the protective effects of heat shock proteins, which exert beneficial effects in cell and mouse models of SBMA9,10.

Based on successful treatment of AR-97Q mice with castration, we investigated the effects of testosterone blockade therapies, using the LHRH analogue and AR antagonist, in the transgenic mice9. Leuprorelin and LHRH analogue reduces testosterone release from the testis and showed marked amelioration of symptoms, histopathologic findings, and nuclear localisation of the transgene protein compared with the vehicle-treated AR-97Q mice. Leuprorelin initially increased the serum testosterone level by agonising the LHRH receptor, but subsequently reduced it to undetectable levels. Leuprorelin-treated AR-97Q mice showed transient deterioration of motor function due to this initial increase in testosterone level. This symptomatic and pathologic aggravation was followed by sustained amelioration along with consequent suppression of testosterone production. Our results indicate that leuprorelin is a promising therapeutic strategy of SBMA, and that polyQ pathogenesis is reversible at least in its dysfunctional stage.

By contrast, flutamide AR antagonist, did not ameliorate symptoms, pathologic features, or nuclear localisation of the mutant AR in the male AR-97Q mice, although there was no significant difference in the androgen blockade effects between flutamide and leuprorelin. Although flutamide suppresses the androgen-dependent transactivation, it does not inhibit, but may even facilitate, the nuclear translocation of AR11-13. Flutamide also promotes nuclear translocation of mutant AR containing expanded polyQ in a cell and Drosophila model of SBMA14-16. This may be the reason why flutamide demonstrated no therapeutic effect in our transgenic mouse model of SBMA.

Therapeutic perspective

As mentioned above, our recent study indicated that leuprorelin exerts therapeutic effects in the SBMA transgenic mouse model. LHRH analogue can easily be applied to human SBMA therapy, because this drug has extensively been used as medical castration in the therapy of prostate cancer15. However, any clinical trial using this approach is difficult as the patient’s desire for fertility should be taken into account, and the appropriate clinical dose should be carefully determined.

Acknowledgements

This work was supported by a Center-of-Excellence (COE) grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by grants from the Ministry of Health, Labour and Welfare, Japan, by a grant from Naito Foundation, and by a grant from Kanec Foundation.

References


Correspondence address:
Gen Sobue, MD
Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8505, Japan
Tel: +81-52-744-2385, Fax: +81-52-744-2384
E-mail: sobueg@med.nagoya-u.ac.jp

Review Article

AmbHion (Europe) Ltd: The RNA resource from the RNA company. Information, research papers, developments, technologies, protocols, products, and manuals for RNA manipulations.

Cambridge Laboratories: Information on our range of neurology products and useful backgrounders on various neurological disorders. Links to key neurological organisations and patient associations are provided.

Cyberonics Europe: Up to date information on Vagus Nerve Stimulation Therapy - the effective and tolerable treatment for refractory epilepsy, includes clinician and patient resources plus contact details for Cyberonics.

Martin Dunitz Ltd: Part of the Taylor & Francis Group, Martin Dunitz publishes top quality, high level medical books in areas such as cardiology, neurology, psychiatry, oncology and urology.

ACNR magazine: Download free PDF’s of articles past and present and link to other sites of interest.

European Parkinson’s Disease Association: 5th European PD Association meeting.

To list your web site in the Web Browser call Rachael on 0131 477 2335.